
 

 

 

 

 

 

THE OSRAY++ L IBRARIES  
 

Application Programming Overview 

By Ray Tobey 
 

 

Document revisions: 

 November 1998 

 July 2000 

 August 2001 

 

 

 

 

 

 

 

 

Contents 
 

OsRay Core Library ........................................................................................................................ 42 
Visual-C Library .............................................................................................................................. 48 
Pixel Library.................................................................................................................................... 49 
Resource Compiler ......................................................................................................................... 50 
Glazier Editor .................................................................................................................................. 51 
Glaze Library .................................................................................................................................. 52 
Pane Library ................................................................................................................................... 54 
Codec Library ................................................................................................................................. 55 
Slang Library................................................................................................................................... 56 
Storage Library ............................................................................................................................... 57 
 



 

 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
2/15/2005 Not to be used, copied or redistributed without express written permission. Page 41 

Introduction 
OsRay++ is a collection of libraries and tools that provide building blocks for 32-bit Windows programs. In 

its third generation, this toolset can work with or replace the standard C, C++ and MFC libraries. The libraries 
consist of the following: 

• OsRay  Core including strings, containers, file access, threads, timing, etc 
• Visual-C Program startup code for use with Microsoft compilers 
• Pixel  2D graphics including bitmap blitters 
• Scene  3D rendering with a scene graph 
• Glaze  GUI windows and controls 
• Pane  GUI sub-components for animation 
• Codec  Lossless & lossy image and data compression 
• Slang  Scripting language compiler 
• Storage  Simplified persistent database 

The goal for the tools is to reduce complexity in the libraries by preprocessing data. Therefore, while the 
libraries represent more than 350 source files, the object code is very small and efficient. The tool programs 
include: 

• Animax  Image editor for icons and graphics 
• Glazier  Window and dialog editor 
• Formax  File format converter 
• Res-Comp Resource compiler to convert editor files to program data 

This document describes the basics of many of the classes, but not all. Nor does it cover all the 
procedures and details of those classes, instead simplifying for clarity. 

Coding Style  
Types (structs, classes, typedefs, etc.) are in UPPERCASE to stand out. Though preprocessor macros 

and definitions are very rare, they are also in uppercase. I have avoided Hungarian notation whenever 
possible, as I believe this defeats the purpose of type checking. 

In order to avoid compiler and processor dependent code, Compiler.H defines the following: 

typedef signed    int    BOOL;  /* boolean (use TRUE or FALSE)  */ 
 
typedef signed    char   SBYTE;  /*    signed    8-bit number    */ 
typedef unsigned  char   UBYTE;  /*    unsigned  8-bit number    */ 
typedef signed    short  SWORD;  /*    signed   16-bit number    */ 
typedef unsigned  short  UWORD;  /*    unsigned 16-bit number    */ 
typedef signed    long   SLONG;  /*    signed   32-bit number    */ 
typedef unsigned  long   ULONG;  /*    unsigned 32-bit number    */ 
typedef signed    int64  SHUGE;  /*    signed   64-bit number    */ 
typedef unsigned  int64  UHUGE;  /*    unsigned 64-bit number    */ 
typedef signed    int    INTS;  /* signed   number (>= 16 bits) */ 
typedef unsigned  int    INTU;  /* unsigned number (>= 16 bits) */ 
 
typedef float            FLT32;  /* Lo precision floating point  */ 
typedef double           FLT64;  /* Hi precision floating point  */ 
 
typedef           char   ICHAR;  /* International character type */ 
typedef const     ICHAR  CONCH;  /* Constant char for string ptr */ 

If the libraries are ported to other processors, these allow the basic types to be redefined. The ICHAR and 
CONCH types are for future expansion to Unicode. 

I do not include header files within other header files, as I like to look at the top of a source module to see 
what it depends on. However, headers should ideally comment their prerequisites. I almost never use C++ 
operator overloading, which I find confusing. Most classes have casting functions instead of casting operators 
and function names like Compare ( ) instead of operator overloading. In almost all cases, the data members 
of classes are private or protected to promote encapsulation, even if not so declared in this document. 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
Page 42 Not to be used, copied or redistributed without express written permission. 2/15/2005 

OSRAY CORE  L IBRARY  

Application Class 
An application using OsRay++ must include one and only one application object, derived from the base 

class APP, defined in OsRay.H. 

class APP : public THREAD 
 { 
virtual void Main (void); 
static void  VAR Message (MSGID msg, ...); 
 }; 

There are two classes derived from this base: 

class APPCON : public APP  // Console application 
 { 
 }; 
 
class APPWIN : public APP  // Graphical user interface 
 { 
 BOOL Dispatch (BOOL wait); 
 void SetFocus (HWND focus, HACCEL accel); 
 }; 

In some cases, a program will declare a custom class derived from one of these, but it’s not necessary: 

static  APPCON  myapp;    // Instance of console application 
 
int main (int argc, char *argv[]) 
 { 
 myapp.Message (HELLO);   // Print a message resource 
 return 0; 
 }; 

Message ( ) replaces printf ( ), either printing to the console or displaying a dialog box depending on the 
derived APP class. 

static  APPWIN  myapp;    // Instance of windowed application 
 
int WinMain (HANDLE inst, HANDLE prev, LPSTR cmdline, int show) 
 { 
 myapp.Message (HELLO);   // Display a message resource 
 return 0; 
 }; 

The constructor for APP initializes the global pointer [app] so code throughout an application and the 
libraries can get access to the APP functions. APPWIN’s Dispatch ( ) provides the Windows message pump. 
SetFocus ( ) directs input to a particular window and specifies the key commands it recognizes.  

Multi-Threading 
The application object is the initial thread for a program. You can spawn additional threads by deriving 

classes from the THREAD base. 

class THREAD 
 { 
virtual void Main (void); 
 void Terminate (void); 
 }; 
 
class APP : public THREAD 
 { 
static void Initialize (THREAD *thd); 
static void MultiThread (void); 
 }; 

Initialize ( ) prepares the operating system for an additional thread, and then MultiThread ( ) begins 
execution of all the initialized threads with their Main ( ) procedures. 

 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
2/15/2005 Not to be used, copied or redistributed without express written permission. Page 43 

Message:   HELLO 
Hello, world!%0 

Strings 
OsRay++ encapsulates text in STRING objects and MESSAGE resources. The STRING class simplifies 

dynamic text: 

class STRING 
 { 
 ICHAR * data;  // Zero terminated character array 
 BOOL alloc;  // Indicates memory must be freed 
 INTU len;  // Number of characters in data 
 
inline BOOL Exists (void)   const; 
inline INTU Length (void)   const; 
inline CONCH * String (void)   const; 
 
 void Clear (void); // Additional assignment procedures 
 BOOL Assign (CONCH *str); //  exist, see the include files 
 BOOL Assume (CONCH *str); 
 BOOL Set (CONCH *src); 
 void  VAR Format (MSGID  fmt, ...); 
 
 void LowerCase (void); // Additional manipulation and 
 void UpperCase (void); //  comparison functions also exist 
  void Replace (ICHAR src, ICHAR dst); 
 BOOL CompareCS (const STRING &targ) const; 
 BOOL CompareCI (const STRING &targ) const; 
 
 void ReadIFF (FILERD *in); // Yes, there’s more file stuff too 
 void WriteIFF (FILEWR *out, ULONG id); 
 }; 

Constant text is often compiled into a program. Instead of quoted strings in the source code, message 
resources should be placed in separate script files, named, and compiled by the resource compiler 
(ResComp.EXE). Although this takes longer, proper formatting (tabs, quotes 
and returns, etc) and international translation are both much easier. The 
resource compiler can also check for errors and compress or obfuscate the 
text. 

STRING’s Format ( ) procedure replaces sprintf ( ) by generating a formatted STRING object from a 
message resource. In addition to fixing some of the bugs in sprintf ( ), message resources have different field 
specifications: 

Specification: %N[JT] 
     N Argument number (1-15) 
     J Optional justification & padding 
     T Field type 
 
Justification: lN Left justified, field width N 
     rN right justified, field width N 
     jN Centered, field width N 
     pX Pad with character X (default is space) 
 
Field types: s Zero terminated ICHAR string (CONCH *) 
     c Single ICHAR character 
     i Ascii identifier value 
     d Signed decimal integer 
     u Unsigned decimal integer 
     o Unsigned octal integer 
     h Unsigned hexadecimal integer 
     b Unsigned binary integer 
     m Compiled message identifier 
     fN Fixed point w/ N digits after decimal point 
 
Terminator:  %0 
Percent char: %% 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
Page 44 Not to be used, copied or redistributed without express written permission. 2/15/2005 

File names can be stored in STRING objects, but to manipulate them use the specialized FNAME class. It 
is similar to STRING (though not a derivative) but breaks the name into its component parts. It is compatible 
with Microsoft’s long (LFN) and 8.3 file names, and will eventually handle Unix as well. Do not use fixed 
length char arrays since LFN requires these to be 260 bytes or larger. 

class FNAME 
 { 
 void Clear (void); 
 void Set (CONCH *fname); 
 void Set (CONCH *path, CONCH *file); 
 void SetPath (CONCH *path); 
 void SetFile (CONCH *file); 
 void SetExt (CONCH *ext, BOOL replace); 
 void DosFix (void); 
 
operator CONCH *  ()        const; 
inline CONCH * String (void)    const; 
inline CONCH * Path (void)    const; 
inline CONCH * File (void)    const; 
inline CONCH * Ext (void)    const; 
inline CONCH * Root (void)    const; 
inline CONCH * Base (void)    const; 
inline BOOL Exists (void)    const; 
inline INTU Length (void)    const; 
 }; 

Error Handling 
Each THREAD has its own error status variables, but the APP class contains the interface: 

class APP 
 { 
static void Clear (MSGID caption); // Clears any recorded errors 
 
static void Beep (STATUS severity); 
static void  VAR Debug (MSGID msg, ...); // There are additional recording 
static void  VAR Warning (MSGID msg, ...); //  functions for system errors 
static void  VAR Error (MSGID msg, ...); 
 
inline BOOL Check (void)   const; // Error checking and reporting 
inline BOOL Abort (void)   const; 
static BOOL Report (void); 
 }; 

Before starting an operation, such as when the user selects a menu 
command, use Clear ( ) to set the caption for any future errors. If an error 
occurs, record it using Warning ( ) or Error ( ). They operate like printf ( ), 
but store the output string for later display. Debug ( ) immediately prints to 
the debugger’s trace log without recording the error. Use Check ( ) to 
continue processing unless an error has already occurred and Abort ( ) to 
detect an error before abandoning an operation. Then, after completing the 
operation, call Report ( ) to display all the error messages. 

class APP 
 { 
static void Attach (REDACTOR *red); 
static void Detach (REDACTOR *red); 
 }; 
 
class REDACTOR 
 { 
virtual void Redact (CONCH *src, STRING& dst) = 0; 
 }; 

To provide the user additional information, error REDACTOR objects can edit messages. For example, a 
file object, described below, is a redactor. Just before reading a file, you can attach the file to the APP, then 
the redactor will append the file name to any error encountered until the file is detached. 

Notice that this does not deal with recoverable errors, nor does it use C++’s exception handling, which I 
find cumbersome. 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
2/15/2005 Not to be used, copied or redistributed without express written permission. Page 45 

Math 
OsRay++ has some basic math functions, including vector and matrix math for 3D graphics. FLT3D and 

TMP3D are currently defined as float and double, respectively. 

class VECTOR 
 { 
 FLT3D x,y,z;  // W value assumed to be 1 
 
inline FLT3D Axis (INTU index)         const; 
 TMP3D Length (void)               const; 
 BOOL Compare (const VECTOR& targ) const; 
 
 void Clear (void); 
 void Normalize (void); 
 void Add (const VECTOR& src1, const VECTOR& src2); 
 void Subtract (const VECTOR& src1, const VECTOR& src2); 
 void Multiply (const VECTOR& src,  const TMP3D scalar); 
 TMP3D Dot (const VECTOR& src2) const; 
 void Cross (const VECTOR& src1, const VECTOR& src2); 
 void Transform (const VECTOR& src,  const MATRIX& mtx ); 
 }; 

Matrices are assumed to be affine, i.e. the last column is 0,0,0,1, and the memory format is the same as 
in OpenGL. 

class MATRIX 
 { 
 TMP3D val [4][4];  // In column major order 
 
 void Clear (void); 
 void Rotate (FIX32 x, FIX32 y, FIX32 z); 
 void Translate (FLT3D x, FLT3D y, FLT3D z); 
 void Scale (FLT3D x, FLT3D y, FLT3D z); 
 
 BOOL Transpose (const MATRIX& src); 
 BOOL Invert (const MATRIX& src); 
 void Multiply3 (const MATRIX& src1, const MATRIX& src2); 
 void Multiply4 (const MATRIX& src1, const MATRIX& src2); 
 }; 

The vector and matrix operations are implemented in optimized assembly language (without MMX). I 
store angles in 16.16 bit fixed point, so Rotate ( ) uses these to rotate a matrix. Quaternions are also included: 

class QUAT 
 { 
 FLT3D x,y,z,w;  // Real scalar and imaginary vector 
 
 void Clear (void); 
 void FromAxis (const VECTOR *axis, FIX32 angle); 
 void FromMatrix (const MATRIX *mtx); 
 FIX32 ToAxis (VECTOR *axis)   const; 
 void ToMatrix (MATRIX *mtx)    const; 
 
 void Multiply (const QUAT *src1, const QUAT *src2); 
 void Add (const QUAT *src1, const QUAT *src2); 
 void Subtract (const QUAT *src1, const QUAT *src2); 
 void Normalize (void); 
 }; 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
Page 46 Not to be used, copied or redistributed without express written permission. 2/15/2005 

Linked Lists 
I use doubly linked lists extensively, but usually intrusive lists. To store an object in the intrusive LISTINT 

<> (a template), its class must be derived from a LINKINT <>. This means that the link pointers are a part of 
the object, not allocated separately. It is both more efficient and simpler than Microsoft’s CList, but an object 
can only be a member of one LISTINT. 

Next *
Prev *

Data

Head *
Tail *
Count

NULL
NULL

LISTINT

Next *
Prev *

Data

Next *
Prev *

Data LINKINT

 

The linked list interface is below. Note that indexes start at 1. Attempting to get the index of a node not in 
a list returns 0. 

template <class TYPE> class LINKINT 
 { 
public: TYPE * Prev (void)       const;  /* Return the previous entry   */ 
 TYPE * Next (void)       const;  /* Return the next entry       */ 
 INTU Index (void)       const;  /* The number of prior entries */ 
 }; 
 
template <class TYPE> class LISTINT 
 { 
public: INTU Count (void)       const;  /* Return number of entries    */ 
 TYPE * Head (void)       const;  /* Return the first entry      */ 
 TYPE * Tail (void)       const;  /* Return the last entry       */ 
 TYPE * Entry (INTU index) const;  /* Return the nummbered entry  */ 
 
 void Append (TYPE *);  /* Add an entry to the end     */ 
 void Insert (TYPE *prev, TYPE *); /* Insert entry in the middle  */ 
 void Remove (TYPE *);  /* Remove a specific entry     */ 
 TYPE * Extract (void);  /* Remove & return first entry */ 
 }; 

Some objects need to be in multiple lists, calling for non-intrusive linked lists. This is a linked list of 
pointers to objects, similar to Microsoft’s CList. 

Next *
Prev *

Object *

Data

Head *
Tail *
Count

NULL
NULL

LISTPTR

Next *
Prev *

Object *

Data

Next *
Prev *

Object *

Data LINKPTR
Object

 

Before adding an object to this type of list, you need a LINKPTR instance. It can be separately allocated 
or a member of an object. If you know how many lists the object can be a member of, you can put the 
LINKPTR’s in the original object itself.  The interface is the same as for the intrusive list, except each 
LINKPTR must be assigned to its referenced object and all the list changes are done with LINKPTR’s instead 
of their referenced objects: 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
2/15/2005 Not to be used, copied or redistributed without express written permission. Page 47 

template <class TYPE> class LINKPTR 
 { 
public: void Init (TYPE *object);  /* Assign to referenced object */ 
 }; 
 
template <class TYPE> class LISTPTR 
 { 
public: void Append (LINKPTR <TYPE> *); 
 void Insert (LINKPTR <TYPE> *prev, LINKPTR <TYPE> *); 
 void Remove (LINKPTR <TYPE> *); 
 }; 

File Access 
File access is encapsulated in the following disk classes, which process sequential files effectively, but do 

not simultaneously read and write to the same file. Word and long operations write according to the endian 
flag: big or small. 

class FILERD : public FILEBASE 
 { 
 BOOL Open (CONCH *fname); 
 void Close (void); 
 void SetFlags (BOOL endian, BOOL align); 
 
 UBYTE ReadByte (void); 
 UWORD ReadWord (void); 
 ULONG ReadLong (void); 
 FLT32 ReadFLT32 (void); 
 void ReadData (void *dst, INTU length); 
 }; 
 
class FILEWR : public FILEBASE 
 { 
 BOOL Open (CONCH *fname); 
 void Close (void); 
 void SetFlags (BOOL endian, BOOL align); 
 
 void WriteByte (UBYTE value); 
 void WriteWord (UWORD value); 
 void WriteLong (ULONG value); 
 void WriteFLT32 (FLT32 value); 
 void WriteData (void *dst, INTU length); 
 void  VAR Message (MSGID msg, ...); 
 }; 

Many file formats are chunky, meaning they contain a series of chunk identifiers with lengths. An 
unknown or unwanted chunk can be skipped by advancing past it’s length. The FILERD and FILEWR classes 
handle most of these formats, including IFF’s such as Dpaint, Lightwave and Maya, RIFF’s such as Windows 
WAV’s and AVI’s, and 3D Studio’s 3DS. 

FORM Identifer, Length

FORM Identifer, LengthChunk:
Identifier,
Length

Chunk:
Identifier,
Length

Chunk:
Identifier,
Length

Chunk:
Identifier,
Length

Chunk:
Identifier,
Length

 

The chunk parser ReadChunks ( ) takes an array of CHNKDEF’s (identifiers with procedure pointers) and 
calls the appropriate reader for each chunk that it encounters, skipping over unknowns. The chunk writing 
functions track the starting and ending points and fill in chunk lengths. SetChunks ( ) specifies the byte sizes 
for a chunk’s identifier and length values, and, along with SetFlags ( ), enables all the different file formats. 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
Page 48 Not to be used, copied or redistributed without express written permission. 2/15/2005 

struct CHNKDEF    /* Chunk definition entry  */ 
 { 
 ULONG id;   /* 4 character identifier  */ 
 ULONG subid;   /* 4 character identifier  */ 
 void (*Reader) (FILERD *);  /* Called when chunk found */ 
 }; 
 
class FILERD 
 { 
 void SetChunks (INTU id, INTU len, BOOL hdr); 
 void ReadChunks (void *owner, CHNKDEF *list); 
 }; 
 
class FILEWR 
 { 
 void SetChunks (INTU id, INTU len, BOOL hdr); 
 ULONG StartChunk (ULONG id, ULONG subid); 
 void EndChunk (ULONG pos); 
 }; 

Chunky files created by Animax and 3D editors are often much more complex than LBM’s or WAV’s. IFF 
forms are often contained within other forms, and later forms can have chunks that reference the previous 
ones. To support this, pointers to objects stored in chunks are cached in an ID reference indexing system 
available in both FILERD and FILEWR classes. These functions convert pointers to chunk indexes and vice 
versa while both reading and writing. 

class CORRELATED 
 { 
 void * Current (ULONG id); 
 void * Entry (ULONG id, INTU index); 
 INTU Index (ULONG id, CVOID *obj); 
 
 INTS Correlate (ULONG id, void *obj); 
 void Select (ULONG id, void *obj); 
 void Select (ULONG id, INTU index); 
 }; 

FILERD also handles some unusual chunk types: 

• A flag chunk is a zero length chunk that indicates TRUE if it exists, FALSE if it does not. Though it 
takes up as many as 8 bytes, it is more portable and durable than a bit field entry in a structure. 

• A NAME chunk is often included within a sub-FORM (a FORM contained inside another FORM). It 
indicates the object’s filename if it were saved by itself. 

• FORM XTRN is a reference to another file. It contains a NAME chunk and an optional PATH chunk, 
and means ‘read this file as if it appeared within the current one’.  

V ISUAL-C L I BRARY  
The standard C libraries include startup code that executes first and then calls main ( ). For many 

programs, some or all of this code is unnecessary. The Visual-C library provides a minimal replacement 
allowing OsRay++ programs to be compiled and linked without any of the standard libraries. 

static  APPWIN  myapp;    // Instance of windowed application 
 
void APP::Main (void) 
 { 
 Message (HELLO);    // Display a message resource 
 }; 

The startup code calls static object constructors and destructors, so declaring an application specifies the 
initial thread of execution. If you need command line  information like argc & argv, see the CMDLINE class in 
File.H of the OsRay core library. 

The Visual-C library also provides global new and delete operators that currently call the operating 
system’s heap routines. Until I replace them with a local allocator, these are considerably slower than the 
standard library versions. 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
2/15/2005 Not to be used, copied or redistributed without express written permission. Page 49 

P IXEL  L IBRARY  
The OsRay core library includes the graphics sources, while the Pixel library contains drawing primitives 

for simple 2D drawing. The primitives do not provide the more complex painting functions of a painting 
program or a 3D renderer but can cooperate with OpenGL. 

typedef ULONG COLOR;  /* Drawing color 8, 16 or 32 bits     */ 
 
struct RGBA   /* Color definition with transparency */ 
 { 
 UBYTE red; 
 UBYTE grn; 
 UBYTE blu; 
 UBYTE alf; 
 }; 
 
struct BOX   /* Rectangle, position and dimensions */ 
 { 
 INTS x, y; 
 INTU w, h; 
 }; 

The PIXMAP class defines bitmap images of various color depths. They can be dynamically allocated to 
any dimensions, loaded from IFF files or compiled into a program with Res-Comp.EXE. 

class PIXMAP 
 { 
 UBYTE lgres;  /* Log (2) of bits / pixel per plane  */ 
 INTS dx;  /* Blit handle offset from top,left   */ 
 INTS dy; 
 INTU wdth;  /* Image dimensions in pixels         */ 
 INTU hght; 
 UBYTE *    pixels;  /* Pointer to pixel data by rows      */ 
 INTU dsplst;  /* OpenGL display list identifier     */ 
 
 void SetRes (UBYTE lgres); 
 BOOL Alloc (INTU wdth, INTU hght); 
 }; 

The PIXTARG class, in the Pixel library, represents the destination for drawing operations using the 
above source types. It is an abstract base, which currently has two derived classes: PIXSOFT and PIXOGL.  

class PIXTARG 
 { 
 void SetOrigin (INTS x, y); 
 void SetClip (BOX *box); 
 
 void SetPixel (INTS x, y, COLOR color); 
 COLOR ReadPixel (INTS x, y); 
 void HorzLine (INTS x, y, INTU w, COLOR color); 
 void VertLine (INTS x, y, INTU h, COLOR color); 
 void Bevel (BOX *box, INTS w, COLOR *shades); 
 void FillBox (BOX *box, COLOR color); 
 void Blit (PIXMAP *bmp, INTS x, y, PIXCNVT *cvt, POINT2 *mag); 
 
 COLOR Convert (PIXCNVT *cvt, INTU index); 
 PIXCNVT * Convert (RGBA *pal, INTU ncolors, UBYTE *indexes, UBYTE lgres); 
 }; 

The PIXCNVT object is the key to the primitives. It is a pre-configured translation table that the 
destination’s Blit ( ) procedure uses to convert from a particular source pixel format (lgres). For example, it 
can draw 8 bit indexed into 16 bit RGB. It can also remap indexed colors as it draws, so the source and 
destination palettes do not have to match. Convert ( ) allocates and builds these according to the source and 
destination pixel types. The single color Convert ( ) function changes an RGBA color definition into a COLOR 
value through a PIXCNVT. 

The PIXOGL graphics destination encapsulates calls to OpenGL, using the dsplst member of a PIXMAP 
to load images into video memory. It allows OpenGL 3D software to use the same 2D and window 
management code as other OsRay++ programs. 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
Page 50 Not to be used, copied or redistributed without express written permission. 2/15/2005 

The PIXSOFT graphics destination is a 2D software renderer, primarily written in assembly language for 
speed. The destination pixel format is specified by a PIXRES structure, which provides custom assembly 
language called by the primitives in the PIXSOFT. It currently supports resolutions of 8, 16 and 32 bits per 
pixel. While PIXSOFT can draw into a DirectDraw surface, a DirectX hardware version should be added. 

class TILESET 
 { 
 PIXMAP image;  // A single, relocatable tile 
 PIXMAP tiles;  // Large image containing all tiles 
 
 INTU nhorz;  // Number of tiles in the container 
 INTU nvert; 
 INTU tilew;  // Single tile dimensions 
 INTU tileh; 
 
 BOOL Alloc (INTU wdth, INTU hght, UBYTE lgres); 
 BOOL Allot (INTU wdth, INTU hght, INTU ntiles); 
 PIXMAP * Location (INTU entry); 
 }; 

The PIXTARG class also contains a blitter for tiled images where each pixel in the source PIXMAP is an 
index into a TILESET. A TILESET is a single bitmap divided into tiles; it’s Alloc ( ) routine specifies the 
dimensions of the container, while Allot ( ) specifies the dimensions of the tiles. Location ( ) returns a PIXMAP 
describing an individual tile within the container. Res-Comp.EXE can also create tiled PIXMAPs and 
TILESETs from Animax files. 

RESOURCE  COMPILER  
Res-Comp.EXE converts both text scripts and 

IFF binary files into data for OsRay++ based 
programs. However, it generates structures to be 
linked in as standard data instead of resources that 
need to be explicitly loaded. 

Message:   HELLO 
Hello, world!%0 

Compiling an input file produces two output files: 
an assembly language data file (.ASM) and a C++ 
header file (.MH). Since most text input to Res-Comp 
consists of message resources, I use the extension 
.MSG. The sample above produces the following 
header: 

extern struct MESSAGE   HELLO []; 

To use a resource in your code, simply put the source file in your make script and #include its .MH header 
before calling an OsRay++ function with a pointer to the structure. There are no integer identifiers to hassle 
with. 

IFF resources: 
• Color palettes 
• Bitmap images 
• Image folders 
• Tile catalogs 
• Tiled images 
• Film animations 
• Glazier windows 
• Glazier dialogs 

Text resources: 
• Message strings 
• Error maps 
• Lexer patterns 
• Parser tokens 
• Parser grammars 
• Native procedure declarations 
• Scripting language code 

Interchange format is an older standard used by Dpaint and Amiga programs. Animax uses IFF 
exclusively, but Photoshop version 5, Debabelizer and other programs also read & write IFF images. 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
2/15/2005 Not to be used, copied or redistributed without express written permission. Page 51 

GLAZ IER  ED ITOR  
The dictionary defines ‘glazier’ as a person who cuts and fits 

glass to windows. Glazier.EXE is a window and dialog editor 
designed to create resource data for use with OsRay++. 

Using Glazier, you can create a window or dialog, set its 
display styles, and then add menus, control gadgets and 
keystroke assignments. The saved file is compiled by the 
resource compiler and linked into a program as an external 
structure. 

While its purpose is the same as the dialog editor in 
Microsoft’s Visual Studio, it produces simpler and more 
complete output. Since it generates linked data structures 
instead of .RC resources, integer identifiers are not necessary. 

Windows 
Use the window menu to create a blank window or dialog. This will put a panel of parameters on the right 

side of Glazier describing the new window. Use the check boxes to set the display style, which match the 
normal and extended flag bits for Microsoft’s CreateWindowEx ( ). The ‘Apply’ button will display the window 
using the changed settings, while the ‘Reset’ button restores the settings to match the displayed window. 

Combinations of these style settings produce varied results, for example, ‘sys menu’, 
‘frame’ and ‘border’ must all be checked to get a close box at the right of a title bar. Since 
Glazier displays its window using the same code that an application would, you can 
experiment to find the right settings. 

In OsRay++, dialogs are very similar to other windows except that they can become modal, meaning that 
the operating system restricts input to other windows while displaying a modal dialog. Microsoft’s API uses 
different data structures and dispatches messages for dialogs differently than for other windows, so you must 
choose a window’s type on creation. 

Controls  
The palette of tools on Glazier’s left side enables you to ‘draw’ control gadgets on a 

window or dialog. By clicking and dragging, you can make a rectangle on the window 
that Glazier will fill with a chosen control. Selecting one of these controls changes the 
parameter panel on the right to one specific to that kind of control. 

Many parameters are common to all controls. Each can be assigned a name for 
interfacing with its parent application. Position and dimensions are specified in pixels, 
not dialog units. The ‘left’ & ‘right’ options specify which side of a control’s parent 
window its x position is relative to. The ‘percent’ option changes the position to be a 
percentage of the parent window’s width. 

Most controls have optional event handler parameters. For these, enter the name of 
a function to call when the event occurs. This function should be a member of the 
window’s class unless you specify a scope as part of the name. 

The default editing mode is . It allows you to select and interact with the 
controls on your subject window. While the primary selected control is outlined in red, 
you can select secondary controls that are outlined in orange. The  editing mode 
lets you move a control or group of selected controls with the mouse. 

The control menu lets you copy a selected control or group of controls from one 
window and paste them into another window. The duplicate command makes copies of 
controls including their parameters. Automatic radio buttons use their group style bit to 
determine which other radios to deselect when they are pressed, so the group command 
puts all the selected controls together in for this purpose. 

 

 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
Page 52 Not to be used, copied or redistributed without express written permission. 2/15/2005 

Commands 
You can add menus to a window or dialog, but be sure to set the window’s style so 

menus can be seen. You must also assign a name to the menu at the top of its 
parameter panel before you can see it. To edit the first menu, select the menu 
command from Glazier’s edit menu. The prev and next buttons switch to other menus. 
If a menu’s parameter panel is showing when you add a menu, the new one goes to the 
left of the current one. Otherwise the new one goes to the right of all the menus. 

Use the parameter panel to add entries to menus. Each entry should have a text 
label and the name of that command’s handler function. Currently, keyboard 
equivalents must be entered into the keystroke list separately. Cascading menus are 
also not yet implemented. 

The keys entry in Glazier’s edit menu lets you assign handlers to specific keystrokes. Just like control and 
menu handlers, key handlers are member functions of the window’s class unless a scope qualifier is part of 
the handler name. 

GLAZE  L I BRARY  
Glaze is the companion library for the Glazier editor, providing an object-oriented interface to the Win32 

API. Often you will not need to include “windows.h” or any of Microsoft’s headers when using Glaze, but it is 
compatible with them. 

Windows 
To open a window, derive a class from WINBASE and create a corresponding window using Glazier. In 

the window’s parameter panel, make sure the class name matches yours. 

class WINBASE : public WINHDL 
 { 
 BOOL Open (WINDOW *def, HWND parent = NULL); 
 void Close (void); 
 void Show (void); 
 void Hide (void); 
 void Invalidate (BOOL erase = TRUE); 
 
 SLONG OnCreate (INTU wParam, SLONG lParam); // Sample message handlers 
 SLONG OnDestroy (INTU wParam, SLONG lParam); 
 }; 

Compiling the window with Res-Comp.EXE will generate 
an external WINDOW structure that you can pass to 
WINBASE’s Open ( ). This structure’s name will be the saved 
window’s filename prepended with win_. 

You will also need a message map. This is an array of 
WMLIST structs, each of which contains a Windows message 
identifier and a procedure pointer to its handler. Glazier should 
eventually generate these, but currently you must supply one. 
It must have the same name as the compiled window, but 
prepended with msg_. Most of the required message handlers 
are members of WINBASE and its derivatives. 

For a dialog, derive your class from WINDLG instead of WINBASE. The compiled DIALOG structure will 
be prepended with dlg_ instead of win_. Note the differences in the message map, such as WM_INITDIALOG 
instead of WM_CREATE. 

class WINDLG : public WINHDL 
 { 
 void Open (const DIALOG *def, HWND parent = NULL); 
 void Modal (const DIALOG *def, HWND parent = NULL); 
 void Close (void); 
 
 void OnCreate (INTU wParam, SLONG lParam); // Sample message handlers 
 void OnDestroy (INTU wParam, SLONG lParam); 
 }; 

const WMLIST  msg_display [] = { 
 
 { WM_CREATE, (WMPROC)  WINHDL::OnCreate }, 
 { WM_CREATE, (WMPROC) WINBASE::OnCreate }, 
 { WM_CREATE, (WMPROC) DISPLAY::OnCreate }, 
 { WM_SIZE, (WMPROC) WINBASE::OnSize  }, 
 { WM_SETFOCUS, (WMPROC) WINBASE::OnSetFocus }, 
 { WM_KILLFOCUS,(WMPROC) WINBASE::OnKillFocus }, 
 { WM_COMMAND, (WMPROC)  WINHDL::OnCommand }, 
 { WM_NOTIFY, (WMPROC)  WINHDL::OnNotify }, 
 { WM_CLOSE, (WMPROC) DISPLAY::OnClose }, 
 { WM_DESTROY, (WMPROC) WINBASE::OnDestroy }, 
 { WM_DESTROY, (WMPROC)  WINHDL::OnDestroy }, 
 {      0,                 NULL   }
                        }; 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
2/15/2005 Not to be used, copied or redistributed without express written permission. Page 53 

Controls  
Win Dlg.H includes small classes for many of the control gadgets. While 

they are most commonly used with dialogs, they work just as well on windows.  

During a dialog’s WM_INITDIALOG handler or a window’s WM_CREATE 
handler, execute the INIT_ macro the resource compiler generates. It will 
attach member objects defined in your derived class to the UI controls 
according to the names specified in each control’s parameter panel in Glazier. 

The WM_COMMAND and WM_NOTIFY handlers 
defined in WINHDL will dispatch events to the 
command handlers specified in Glazier for menus, 
keystrokes and controls. In the command handlers 
you supply, use the Get ( ) and Set ( ) functions for 
the various control classes to read and write the 
displayed gadgets. 

class CTLBASE  // Base class for various control interfaces 
 { 
 BOOL Open (const CONTROL *def, const WINHDL *parent); 
 void Assign (const WINHDL *parent, INTU id); 
 
 void Clear (void); 
 BOOL GetText (STRING *str); 
 void SetText (CONCH *str); 
 void  VAR FmtText (MSGID msg, ...); 
 }; 

Most controls have text captions, which are displayed in different ways. As the base for the control 
classes, CTLBASE provides access to the caption. FmtText ( ) generates a formatted string from a message 
resource, a la sprintf ( ), and sends it to a gadget. GetText ( ) retrieves a string from a gadget. Each of the 
derived control classes has additional functions specific to a particular type of Windows gadget. 

Graphics Windows 
Glaze includes several window classes derived from WINBASE providing graphic displays. The WINDIB 

class uses a Win32 DIBSection as display memory, and a PIXSOFT that draws into it. 

class WINDIB : public WINBASE 
 { 
 PIXSOFT pixdst; 
 
virtual BOOL Alloc (INTU wdth, INTU hght); 
virtual void SetColors (const RGBA *colors, INTU ncolors); 
virtual void GetColors (const RGBA *colors, INTU ncolors, UBYTE *index); 
virtual void Paint (BOX *box = NULL, BOOL async = FALSE); 
virtual void * Lock (BOX *box); 
virtual void Unlock (void *surface); 
 
 SLONG OnPaint (INTU wParam, SLONG lParam); 
 SLONG OnErase (INTU wParam, SLONG lParam); 
 SLONG OnPalChange (INTU wParam, SLONG lParam); 
 SLONG OnQueryPal (INTU wParam, SLONG lParam); 
 }; 

The OnEraseBkgnd ( ) and OnPaint ( ) message handlers (which must go into your 
message map) use the GDI to paint the image on the screen. Doing this on 
WM_ERASEBKGND eliminates the flicker so many Windows programs exhibit when 
responding to WM_PAINT messages. The SetColors ( ) function sets the color palette 
for the window, while GetColors ( ) retrieves color indexes for an array of RGBA color 
definitions. These functions allow the window to use an identity palette while the 
PIXSOFT’s Convert ( ) function handles color translation. 

Class WINDX is also a window with a PIXDEST, implemented using DirectDraw as 
the display memory. It shares the interface of WINDIB making these classes 
interchangeable. The relevant procedures are included in WINBASE as virtuals so an 
application need not know which API it is using. 

class CONNDLG : public WINDLG 
 { 
 CTLEDIT addrbox; // Control gadget interfaces 
 CTLEDIT portbox; 
 
 void Connect (void); 
 void OnCreate (INTU wParam, SLONG lParam); 
 }; 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
Page 54 Not to be used, copied or redistributed without express written permission. 2/15/2005 

Class WINOGL provides a window for a double-buffered OpenGL graphics display. Its WM_PAINT and 
WM_ERASEBKGND handlers Render ( ) to draw the display. Override it to display your own. 

class WINOGL : public WINBASE 
 { 
 OPENGL * opengl; 
 
virtual BOOL Render (const BOX *area); 
 
 SLONG OnCreate (INTU wParam, SLONG lParam); 
 SLONG OnSize (INTU wParam, SLONG lParam); 
 SLONG OnErase (INTU wParam, SLONG lParam); 
 SLONG OnPaint (INTU wParam, SLONG lParam); 
 SLONG OnDestroy (INTU wParam, SLONG lParam); 
 }; 

While WINOGL has the same virtuals as the others, its display memory is not accessible. It is partially 
interchangeable with WINDIB and WINDX. All of these window classes can implement the pane manager 
using their virtual procedures. 

 Putting a PIXOGL member into a WINOGL derived class results in an OpenGL window with a hardware 
accelerated PIXTARG interface, while putting an OPENGL object into a WINDIB derived class results in a 
PIXTARG with a software OpenGL interface. 

PANE L I BRARY  
A pane is a transparent sheet on the display, providing a surface for a graphical user interface object. It 

performs the same function as a Windows HWND, except that Windows handles transparency and color 
palettes particularly poorly, while the lack of double buffering causes flickering and tearing. Since key features 
of Animax are animation and transparency, it uses PANE’s instead of HWND’s in most cases. Panes also 
happen to be independent of the operating system, much simpler and potentially faster. 

Display

Transparent
Panes

Solid
Pane

 

The PANE class is a base for customized graphical objects. The virtual function Draw ( ) should be 
overridden to paint the pane, just like a WM_PAINT message does under Windows. However, it is important 
that a pane retain enough state information to do this very quickly. Also, a pane should never paint itself at 
any other time. It should change its internal state variables and invalidate a region. Override Mouse ( ) to 
respond to mouse clicks, Feedback ( ) to change the cursor, etc. 

class PANE : public LINKINT <PANE> 
 { 
virtual void Draw (GFXDEST *dst); 
virtual void Mouse (INTS x, INTS y, INTU state); 
virtual void Feedback (GFXDEST *dst, INTS x, INTS y); 
 }; 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
2/15/2005 Not to be used, copied or redistributed without express written permission. Page 55 

INTU  pass = 0; 
 
while (app->Check() && cdc->Configure(pass)) 
 { 
 for each image… 
  { 
  cdc->Process (image, NULL, prep); 
  } 
 
 cdc->Build (pass++, 16); 
 } 

A SILL is a container for PANE’s, displaying a linked list of panes layered with the first in the list on top. 
Adding a pane inserts it into the list according to its depth. The PANE’s box defines its position relative to its 
parent SILL. Coordinates within the PANE are relative to its box. 

class SILL 
 { 
LISTINT <PANE> panes; 
 
 void Show (PANE *pane); 
 void Hide (PANE *pane); 
 void Surface (PANE *pane); 
 void Refresh (void); 
 void Refresh (const BOX *box); 
 }; 

Inside the SILL class is a dirty rectangle system for refreshing the display. When a pane or a part of a 
pane changes, it calls a Refresh ( ) function to record the changed display area. At the end of every event, the 
dirty boxes are merged and those areas redrawn. 

CODEC  L I BRARY  
The CODEC class is the base class for several interchangeable compressor / decompressor 

implementations. A compressor program can create an instance of any of these compressors, iterate over the 
source images as shown in the example below, then output compressed images. 

class CODEC 
 { 
virtual BOOL Init (void); 
virtual BOOL Configure (INTU pass); 
virtual void Configure (BITRD *in); 
virtual void Configure (BITWR *out); 
 
virtual void * Prepare (PIXMAP *targ); 
 BOOL Process (PIXMAP *targ, PIXMAP *prev, void *prep); 
virtual void Build (INTU pass, INTU maxbits); 
 
virtual void Read (void); 
virtual void Write (void); 
virtual void Log (FILEWR *out, ULONG fsize); 
virtual void Verbose (FILEWR *out, ULONG fsize); 
 }; 

While the Codec library provides many different compressors that can also decompress, a few are paired 
with high speed decompressors in the OsRay core: 

• CDQPLZ generates predictive lempel-ziv for PAKPLZ. This is a lossless compressor for paletted 
images. It outperforms GIF by a fair margin. 

• CDQHAAR uses the Haar wavelet transform and meshes with PAKHAAR. This is a lossy 
compressor designed for video, where speed is more important than image quality. 

• CDQDAUB uses a Daubechies wavelet transform that PAKDAUB reads. This is a lossy 
compressor with quality similar to JPEG, but it can achieve much higher ratios. Since it is slow, it 
is best for images that can be decompressed in advance of being displayed, such as texture 
maps. 

Some compressors generate a preparation data 
block. In the case of the predictive lempel-ziv codec, 
the prep data is a predictor table describing which pixel 
values follow each possible color by probability. Your 
compressor program should use a separate prep block 
for each color palette. 

The Haar and Daubechies compressors operate on 
continuous data, such as gray scale or true color. RGB 
images are converted to YUV before compression, and 
quality is higher for intensity than chroma channels. 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
Page 56 Not to be used, copied or redistributed without express written permission. 2/15/2005 

NATIVE Print (value); 
 
CountDown (value) 
    { 
    while (value) 
        { 
        Print (value); 
        value = value - 1; 
        } 
    } 

Natives:  TEST 
public: void Print   (int value) 
public: void Display (int value) 
%0 

The PAKPIX class is the base for the fast decompressors included in the OsRay core: 

class PAKPIX 
 { 
 void Configure (PIXMAP&  dst); 
 void Configure (PIXSOFT& dst); 
 void Configure (void *pixels, INTU w, INTU h, INTU pitch, INTU lgres); 
 
virtual void Prepare (PAKBIT& in); 
virtual void Decompress (PAKBIT& in); 
 }; 

Use one of the Configure ( ) procedures to specify the destination for the decompressed pixels. The 
PAKBIT class specifies the compressed source pointer. It allows the compressed data to be stored in a bit 
stream regardless of byte & word boundaries. 

SLANG L I BRARY  
Slang is a scripting language with a very simplified C-like syntax, designed for animation. It executes in a 

stack based virtual machine, but can call C and C++ as well as its own subroutines. Slang scripts can be 
attached to frames and sequences in Animax, and Res-Comp can also compile scripts for testing. 

class AMEXEC 
 { 
 BOOL SetScript (AMCODE *scr); 
 void SetNative (const AMPROC *list); 
 MSGID Execute (void *cip); 
 }; 

The OsRay core contains the abstract machine executive (AMEXEC), which executes compiled byte code 
(AMCODE). The Slang library is the compiler that produces this byte code. It currently recognizes the 
following grammar: 

• Native procedure declarations 
• Scripted procedure declarations 
• Code blocks { … } 
• Comments: /* … */ and // … 
• If (expression) 
• Else 
• While (expression) 
• Assignments: cell = expression 
• Math: +, -, *, / 
• Procedure calls 

There is only one variable type, the CELL, a 32 bit signed integer. Procedures can receive cells as 
parameters, declare them as local variables, and return them as results. 

In order to call native C and C++ procedures, Slang 
requires native procedure declarations: the keyword NATIVE 
followed by the prototype. These prototypes must be in Slang 
form, where parameters have no type keywords since they are 
all cells. As separate resources, Res-Comp can generate native procedure lists, AMPROC structures. To link 
compiled Slang to its C++ parent, SetScript ( ) matches the scripted procedure calls to the natives most 
recently assigned by SetNative ( ). 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
2/15/2005 Not to be used, copied or redistributed without express written permission. Page 57 

STORAGE  L I BRARY  
Database systems are designed to store records reliably and access that data quickly. However, some 

applications do not require the complexity of commercial database systems. The storage library records 
blocks of data indexed by 32-bit keys. The library features: 

• A single block of binary data can be stored under each index key. 
• Index keys cannot be duplicated. 
• Atomic write operations insure that a corrupted database is never written. 
• Transactions insure that if any records are modified, all of them are. 
• B+Tree hierarchy optimizes the number of sectors accessed per record. 
• Multiple processes can read simultaneously, but only one can write. 
• Solid state drives eliminate lengthy seek delays. 

To prevent confusion with relational databases, I refer to these databases as ‘data stores’. The library 
supports two types of data stores. 

class DATAFILE : public STORE 
 { 
 void Configure (INTU size); 
 BOOL Create (CONCH *fname, INTU count); 
 BOOL Open (CONCH *fname); 
 void Close (void); 
 }; 

The DATAFILE class represents a data store contained in a single file. Its Configure ( ) procedure selects 
a sector size before a data file is created. The default is 256 bytes. The [count] parameter to Create ( ) 
specifies the number of such sectors to allocate for a file. 

class DATADISK : public STORE 
 { 
 BOOL Create (INTU disk); 
 BOOL Open (INTU disk); 
 void Close (void); 
 }; 

The DATADISK class represents a data store that fills an entire drive. Both types use all of the space 
allotted to them at creation. They cannot grow dynamically, so if one becomes full, it must be copied into a 
larger storage container. 

class RECORD : public STATUS 
 { 
public: RECORD (STORE& sto); 
 
 BOOL Head (void);    // Record selection 
 BOOL Prev (void); 
 BOOL Next (void); 
 BOOL Tail (void); 
 BOOL Locate (INTU index); 
 BOOL Search (ULONG key); 
 
inline BOOL Valid (void)   const;     // Data block access 
inline ULONG Key (void)   const; 
 INTU Length (void); 
 BOOL Read (void *buffer, INTU length); 
 }; 

The RECORD class allows read access to individual entries within a data store. The Locate ( ) procedure 
selects a particular entry according to its numerical position, starting with 1. The Search ( ) procedure finds 
the entry with a specific 32-bit index key. Prev ( ) and Next ( ) step through the existing records sequentially 
from the current position, while Head ( ) and Tail ( ) select the first and last entries in the data store. 

Once an entry has been selected with these operations, the record and its data block can be read with 
the access functions. Valid ( ) indicates whether a record is currently selected. 



 

CONFIDENTIAL This document Copyright  2001 by Raymond E. Tobey. All rights reserved. CONFIDENTIAL 
Page 58 Not to be used, copied or redistributed without express written permission. 2/15/2005 

The TRANSACT class allows writing to existing records as well as creating new ones: 

class TRANSACT : public RECORD 
 { 
public: TRANSACT (STORE& sto); 
 
 BOOL Insert (ULONG key); 
 BOOL Delete (void); 
 
 BOOL Write (const void *data, INTU length); 
 BOOL Commit (void); 
 }; 

Since TRANSACT is based on the RECORD class, any of its inherited procedures can be used to select 
existing records to modify. The Insert ( ) procedure will create a new entry in the data store if the specified 
index key is unique. When Write ( ) is called on a particular record, that entry’s data block is replaced with the 
new data. In order to append data to a record, it must first be read and a composite data block created in 
memory. 

Transactions are used to insure that multiple operations are completed as a unit. None of the records 
modified with a TRANSACT object are changed until its Commit ( ) procedure is called. At that time, all of 
those records are modified at once with an atomic operation. If Commit ( ) returns FALSE, an error has 
occurred and the data store remains unchanged. 


